
 Electronic copy available at: https://ssrn.com/abstract=2860048 

	 1	

Responsibility	&	Machine	Learning:		
Part	of	a	process	

	
	 	 Jatinder	Singh*†,	Ian	Walden+,	Jon	Crowcroft*,	Jean	Bacon*	

	
*Computer	Laboratory,	University	of	Cambridge	

+Centre	for	Commercial	Law	Studies,	Queen	Mary	University	of	London	
	

Abstract	
	
As	machine	learning	(ML)	becomes	increasingly	prevalent,	concerns	are	mounting	over	its	use.	This	
discussion	 paper	 explores	 notions	 of	 responsibility	with	 regard	 to	ML,	 focusing	 on	 transparency	
and	 control.	 We	 recognise	 that	 such	 concerns	 extend	 beyond	 the	 ML	 technology	 itself,	 to	 the	
workflows	and	processes	in	which	the	ML	operates,	i.e.	its	potential	impact.	As	such,	it	is	important	
to	consider	not	only	the	nature	of	machine	learning	techniques,	but	also	the	data	involved	and	its	fit	
within	a	broader	process.	Each	of	these	aspects	relate	to	responsibility,	as	they	represent	points	for	
choice	and	intervention.			

1.			Setting	the	scene	
	
Machine	 learning	 (ML)	 is	 currently	 the	 subject	 of	 much	 hype.1	There	 has	 been	 significant	
attention	given	to	recent	high	profile	achievements,	such	as	Google/Deepmind’s	AlphaGo	 that	
recently	 defeated	 a	 grandmaster	 in	 the	 game	 Go, 2 	and	 less-savoury	 outcomes,	 such	 as	
Microsoft’s	 Twitter-bot	 Tay	 that	 became	 foul-mouthed	 and	 racist	 after	 being	 exposed	 to	
Internet	trolls.3	
	
Much	of	the	surge	in	enthusiasm	regarding	ML	stems	from	its	promise	of	enabling	new	insights	
and	efficiencies	in	a	wide	range	of	areas,4	including	medicine	(diagnostics,	precision	medicine),	
finance	 (fraud	 detection,	 trend	 prediction),	 transport	 (automated	 cars,	 traffic	 management),	
cyber	security	(intrusion	detection)	to	name	but	a	few.	ML	is	already	actively	used	in	a	number	
of	 areas,	 for	 example	 for	 voice	 and	 handwriting	 recognition,	 spam	 detection,	 automated	
translation,	and	e-commerce	recommendation	systems.	
	
Machine	 learning5	works	 to	 uncover	 patterns	 in	 data,	 to	 build	 and	 refine	 representative	
mathematical	models	of	data	that	can	be	used	to	make	predictions	and/or	describe	data	to	gain	

																																								 																					
†	Contact	author:	jatinder.singh@cl.cam.ac.uk	
This	paper	has	been	produced	by	members	of	the	Microsoft	Cloud	Computing	Research	Centre	(MCCRC),	a	Microsoft	
funded	collaboration	between	the	Cloud	Legal	Project,	Centre	for	Commercial	Law	Studies,	Queen	Mary	University	of	
London	 and	 the	 Computer	 Laboratory,	 University	 of	 Cambridge.	 A	 draft	 was	 first	 presented	 in	 Sept	 2016	 at	 the	
MCCRC	Symposium	on	“Machine	Learning:	Technology,	Law	&	Policy”.	We	thank	Toby	Miller,	the	rest	of	the	MCCRC	
team,	and	attendees	of	the	symposium	for	their	valuable	comments	and	feedback.	We	also	thank	Microsoft	for	their	
financial	support.	Responsibility	for	views	expressed	remains	with	the	authors.		
1 	‘Gartner	 2015	 Hype	 Cycle:	 Big	 Data	 Is	 Out,	 Machine	 Learning	 Is	 in’,	 accessed	 25	 July	 2016,	
http://www.kdnuggets.com/2015/08/gartner-2015-hype-cycle-big-data-is-out-machine-learning-is-in.html.	
2	‘AlphaGo	|	Google	DeepMind’,	accessed	25	July	2016,	http://deepmind.com/alpha-go.	
3	Helena	 Horton,	 ‘Microsoft	 deletes	 “teen	 girl”	 AI	 after	 it	 became	 a	 Hitler-loving	 sex	 robot	 within	 24	 hours’,	The	
Telegraph,	24	March	2016.	http://tinyurl.com/hjsdsjh	
4 	For	 some	 examples,	 see	 Gartner,	 ‘Machine	 Learning	 Drives	 Digital	 Business’,	 11	 August	 2014,	
http://www.gartner.com/document/2820120.	
5	Note	 that	 this	paper	considers	ML	 in	a	more	 immediate	 future.	We	do	not	explore	 issues	as	 they	might	relate	 to	
superintelligence,	artificial	general	intelligence,	the	singularity,	or	artificial	consciousness.	Rather,	we	focus	on	what	
is	 termed	narrow	or	weak	artificial	 intelligence;	 i.e.	ML/AI	techniques	applied	to	achieve	specific	goals:	see	Stuart	
Jonathan	Russell	and	Peter	Norvig,	Artificial	Intelligence:	A	Modern	Approach	(Prentice	Hall,	2010).		

Electronic copy available at: https://ssrn.com/abstract=2860048



 Electronic copy available at: https://ssrn.com/abstract=2860048 

	 2	

knowledge	 and	 insight.6 As	 a	 discipline,	ML	 is	 not	 particularly	 new;	 however,	 several	 factors	
have	led	to	increased	awareness.	
	
First	is	the	emergence	of	‘big	data’	and	the	Internet	of	Things	(IoT),	as	a	growing	source	of	such	
data,	 which	 in	 light	 of	 the	 so-called	 ‘data	 revolution’7	is	motivating	 the	 search	 for	 new	 data-
driven	 insights	 and	 efficiencies.	 There	 is	 a	 need	 for	 new	 and	 better	mechanisms	 for	 dealing	
with	the	volume	of	data	available:	to	assist	in	finding	the	signals	within	the	noise,	the	needles	
within	 the	 ever-growing	 haystacks;	 as	 well	 as	 for	 increasing	 scope	 for	 automation.	 ML	 has	
much	to	offer	in	this	space.		
	
Technical	 developments	 are	 also	 relevant.	 Lower	 storage	 costs	 enable	 ever	more	 data	 to	 be	
collected.	Improvements	in	network	infrastructures,	for	transferring	and	distributing	data,	and	
in	 computational	 power,	 e.g.	 GPU	 technologies	 that	 suit	 certain	 ML	 methods,8	bring	 more	
capacity	for	supporting	and	developing	ML	processes.	Cloud	computing,	by	providing	access	to	
(potentially)	 vast	 resources	 on-demand,	 facilitates	 further	 research,	 development,	
experimentation	 and	 deployment	 of	more	 complex	ML	 techniques.	 Access	 to	 state-of-the-art	
ML	 functionality	 is	 improving:	Machine	 Learning	 as	 a	 Service	 (MLaaS)	 offerings	 continue	 to	
emerge,9	and	a	number	of	ML	platforms	and	libraries	are	openly	available.10	
	
Further,	 there	 have	 been	 advancements	 in	 the	 machine	 learning	 techniques	 themselves.	
Particularly	high	profile	is	the	emergence	of	deep	learning,11	which	in	artificial	neural	networks	
for	 example,	 involves	 multiple	 (hidden)	 layers	 that	 enable	 more	 complex	 models	 to	 be	
constructed	 (see	 §2.1).	 AlphaGo	 is	 a	 well-known	 example	 that	 involves	 deep	 learning	
techniques.12	
	
1.1 Responsibility	in	ML	systems	
	
ML	 raises	 interesting	 questions	 regarding	 responsibility.	 Generally	 the	 concern	 is	 that	 if	ML	
operates	 without	 being	 specifically	 programmed	 –	 that	 is,	 by	 learning	 a	model	 from	 data	 –	
where	 does,	 or	 should,	 responsibility	 lie	 for	 the	 consequences	 of	 decisions	 and	 actions	 that	
result	from	its	outputs?		
	
In	law,	responsibility	generally	leads	to	liability,	i.e.	a	potentially	adverse	consequence	for	the	
person	held	responsible,	given	that	harm	may	be	caused	to	persons,	property	or	various	states	
of	being.13	One	function	of	a	legal	system	is	to	assign	liability	(read	responsibility)	in	specified	
situations;	to	establish	some	legal	certainty	where	complexity	exists.	Under	a	product	liability	
regime,	for	example,	the	 ‘producer’	 is	designated	as	strictly	 liable	for	any	harm	caused	by	the	
product.14		
	

																																								 																					
6	Ethem	Alpaydin,	Introduction	to	Machine	Learning	(MIT	Press,	2014).	
7	Rob	Kitchin,	The	Data	Revolution:	Big	Data,	Open	Data,	Data	Infrastructures	and	Their	Consequences	(SAGE,	2014).	
8 	‘How	 the	 GPU	 Is	 Revolutionizing	 Machine	 Learning	 |	 NVIDIA	 Blog’,	 accessed	 26	 July	 2016,	
https://blogs.nvidia.com/blog/2015/12/10/machine-learning-gpu-facebook/.	
9 	Some	 examples	 include	 BigML.com,	 AmazonML,	 Google	 Cloud	 Machine	 Learning,	 Microsoft	 Azure	 Machine	
Learning	and	IBM	BlueMix.		
10	For	some	examples	see:	
https://daoudclarke.github.io/machine%20learning%20in%20practice/2013/10/08/machine-learning-libraries/	
11	Yann	LeCun,	Yoshua	Bengio,	and	Geoffrey	Hinton,	‘Deep	Learning’,	Nature	521,	no.	7553	(28	May	2015):	436–44,	
doi:10.1038/nature14539.	
12	David	Silver	et	al.,	‘Mastering	the	Game	of	Go	with	Deep	Neural	Networks	and	Tree	Search’,	Nature	529,	no.	7587	
(28	January	2016):	484–89.	
13	E.g.	public	order	or	the	administration	of	justice.	
14	See	Noto	La	Diego	 and	Walden,	Contracting	 for	the	 Internet	of	Things:	Looking	 into	the	Nest,	 forthcoming	 in	 the	
European	Journal	of	Law	and	Technology.	
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Regarding	 ML,	 the	 key	 consideration	 is	 the	 impact	 and	 effect	 of	 the	 ML.	 We	 emphasise	 the	
importance	of	recognising	that	ML	operates	as	part	of	a	system,	entailing	different	processes	and	
comprised	of	different	components.	
	
This	discussion	paper	does	not	directly	examine	issues	of	legal	liability,15	but	instead	considers	
the	 component	 elements	 of	 ML	 systems	 to	 identify	 those	 points	 where	 a	 person	 (whether	
natural	or	 legal)	can	be	said	 to	exercise	control	and	therefore	may	be	held	 to	be	responsible.	
Our	goal	is	to	illuminate	aspects	of	responsibility	as	they	relate	to	the	design,	development,	use	
and	ongoing	management	of	ML	systems.		
	
Specifically,	we	 explore	 control	 and	 transparency	 relating	 to	 the	 construction	 and	 use	 of	ML	
systems,	considering	the	nature	of:	

• ML	techniques,	
• data	(training	and	operational),	
• ML	outputs,	and	
• the	broader	systems	context;	 i.e.	 the	workflows,	processes,	and	system	supply	chains	

surrounding	and	integrating	the	ML.		
Each	of	the	above	relate	to	responsibility,	as	they	entail	design	decisions	and	represent	points	
for	intervention.		
	
By	 ‘control’,	 we	mean	 both	 a	 legal	 right	 and	 the	 ability	 to	make	 decisions	 about	 how	 an	ML	
system	 is	made,	 deployed,	managed	and	utilised.	One	without	 the	other	 can	 also	 give	 rise	 to	
responsibility,	and	therefore	liability,	but	are	beyond	the	scope	of	this	paper.16	The	concept	of	
‘control’	has	gained	widespread	usage	 in	UK	law	for	addressing	the	regulation	of	 information	
and	communication	technologies	(‘ICT’),	such	as	ML	systems.17		
	
In	terms	of	‘transparency’,	those	persons	exercising	control	(including	building	the	system)	will	
obviously	have	a	need	in	order	to	be	able	make	effective	decisions	in	respect	of	the	ML	system,	
such	 as	 evaluating	 and	 tuning	 the	 system.	However,	 there	 is	 also	 the	 need	 for	 demonstrable	
transparency	 towards	 third	 parties,	 such	 as	 end	 users	 and	 regulators. 18 	Mandatory	
transparency	is	also	a	common	regulatory	response	to	ICT	developments,	designed	to	facilitate	
choice	 and	 accountability.19	The	 provision	 of	 ‘raw	 information’	 is	 generally	 not	 sufficient	 to	
discharge	 an	 obligation	 of	 transparency;	 such	 information	 must	 also	 be	 ‘intelligible’	 to	 the	
person	to	whom	it	is	given.20	
	
We	conclude	by	indicating	some	technical	research	directions,	which	may	assist	with	managing	
obligations	and	clarifying	responsibilities.	
	
	

																																								 																					
15	See	Chris	Reed,	Elizabeth	Kennedy,	and	Sara	Nogueira	Silva,	‘Responsibility,	Autonomy	and	Accountability:	Legal	
Liability	for	Machine	Learning’,	Queen	Mary	School	of	Law	Legal	Studies	Research	Paper	No.	243/2016.	Available	at	
SSRN:	https://ssrn.com/abstract=2853462,	Oct	2016.	
16	E.g.	unauthorised	access	to	a	system.	
17	E.g.	the	Computer	Misuse	Act	1990,	s.	17(5),	“entitled	to	control	access	of	the	kind	in	question	to	the	program	or	
data”;	the	Regulation	of	Investigatory	Powers	Act	2000,	s.	1(3),	‘a	person	having	the	right	to	control	the	operation	or	
the	 use	 of	 a	 private	 telecommunication	 system’;	 Communications	 Act	 2003,	 s.	 32(4)(b),	 “under	 the	 direction	 or	
control	of	another	person”. 
18	See	Dimitra	Kamarinou	and	Christopher	Millard,	‘Machine	Learning	with	Personal	Data’,	SSRN,	2016	(to	appear).	
19	Privacy	and	Electronic	Communications	Regulations	2003	(SI	No.	2426),	 r.	6;	Electronic	Commerce	Regulations	
2002	(SI	No.	2013),	at	r.	9-10.	
20	E.g.	Data	Protection	Act	1998,	s.	7(1)(c).	
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2.	Machine	learning	algorithms	
	
ML	 entails	 learning	 patterns	 and	 relationships	 from	 data	 to	 build	 generalisable	models	 that,	
when	 exposed	 to	 new	 or	 unseen	 data,	 assist	 in	 a	 range	 of	 general	 tasks,	 including	
categorisation,	 profiling,	 prioritisation,	 filtering	 and	 prediction.21	This	 section	 focuses	 on	 the	
ML	 techniques	 –	 the	 algorithms	 –	 for	 learning	 a	 model	 from	 the	 data.	 Note	 that	 we	 take	 a	
narrow	view	of	the	term	‘algorithm’,	specifically	considering	the	techniques	for	model	building,	
as	 opposed	 to	 some	 literature	 that	 uses	 the	 term	 in	 a	 broader	 sense	 to	 encompass	 the	
surrounding	systems	and	processes.		
	
There	 is	a	wide	variety	of	algorithmic	ML	techniques.	 In	an	algorithmic	context,	 transparency	
relates	to	the	degree	the	internals	of	the	algorithms	can	be	seen	and	understood;	for	instance,	
exposing	 the	 features	 of	 the	 data	 the	 learned	model	 takes	 into	 account,	 the	 associations	 and	
rules	that	were	derived,	and	the	extent	to	which	the	model	relies	on	these.	Notions	of	control	
are	 very	 much	 related,	 concerning	 how	 algorithms	 can	 be	 managed	 and	 constrained,	 for	
example	to	prevent	particular	associations	being	made,	or	setting	bounds	on	outputs.	
	
Selecting	 an	 appropriate	 approach	 that	 is	 relevant	 to	 the	 problem	 domain	 is	 a	 challenge	 in	
itself.22		However,	 it	 follows	 that	algorithmic	 selection	not	only	 impacts	 the	quality	of	 the	ML	
model,	but	the	degree	to	which	the	inner	workings	of	the	ML	algorithm	and	learned	model	can	
be	interpreted	and	controlled	depends	on	the	technique	used.	
	

2.1	Algorithmic	opacity		
	
Some	 ML	 algorithms	 are	 more	 amenable	 to	 meaningful	 inspection 23 	(see	 Table	 1)	 and	
management	than	others.	
	
	 Decision	

Trees	
Neural	

Networks	
Naïve	
Bayes	

kNN	 Support	
Vector	

Machines	

Rule	
learners	

Explainability	/	
Knowledge	transparency			

****	 *	 ****	 **	 *	 ****	

Table	 1:	 Comparison	 of	 learning	 algorithms	 for	 classification	 and	 their	 levels	 of	 interpretability		
(‘****’	being	most	interpretable).	Table	adapted	from	Kotsiantis.24	

Generally,	logic-based	ML	approaches	tend	to	be	easier	to	interpret,25	for	instance,	those	based	
on	 learning	 decision	 trees.26	As	 Fig	 1.	 illustrates,	 a	 decision	 tree	 essentially	 entails	 a	 graph	

																																								 																					
21	Nicholas	Diakopoulos,	 ‘Accountability	 in	Algorithmic	Decision	Making’,	Commun.	ACM	 59,	no.	 2	 (January	2016):	
56–62,	doi:10.1145/2844110.	
22	For	an	illustration	of	appropriate	techniques	for	various	problem	domains	as	offered	by	the	Azure	platform:		
http://download.microsoft.com/download/A/6/1/A613E11E-8F9C-424A-B99D-65344785C288/microsoft-
machine-learning-algorithm-cheat-sheet.pdf	
23	‘Meaningful’	 in	 the	 sense	 that	 it	 can	 be	 readily	 interpreted	 and	 understood	 by	 humans:	 see	 intepretability	 in	
Marco	Tulio	Ribeiro,	Sameer	Singh,	and	Carlos	Guestrin,	 ‘“Why	Should	I	Trust	You?”:	Explaining	the	Predictions	of	
Any	Classifier’,	arXiv:1602.04938	[Cs,	Stat],	16	February	2016,	http://arxiv.org/abs/1602.04938.	
24	S.	B.	Kotsiantis,	 ‘Supervised	Machine	Learning:	A	Review	of	Classification	Techniques’,	in	Proceedings	of	the	2007	
Conference	 on	 Emerging	 Artificial	 Intelligence	 Applications	 in	 Computer	 Engineering:	 Real	 Word	 AI	 Systems	 with	
Applications	 in	 eHealth,	 HCI,	 Information	 Retrieval	 and	 Pervasive	 Technologies	 (Amsterdam,	 The	 Netherlands,	 The	
Netherlands:	IOS	Press,	2007),	3–24.	
25	Ibid.	
26	J.	R.	Quinlan,	‘Induction	of	Decision	Trees’,	Machine	Learning	1,	no.	1	(n.d.):	81–106,	doi:10.1007/BF00116251.	
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(flowchart)	representing	the	associations	between	variables	in	the	data.	Such	a	representation	
is	more	amenable	 to	 interpretation	(when	compared	to	other	methods,	 though	of	course,	 the	
degree	of	interpretability	depends	on	the	complexity	of	the	tree	–	highly	complex	trees	can	be	
very	difficult	 to	 interpret);27	e.g.	 in	a	situation	where	a	recommender	system	is	used	to	assist	
employment	decisions,	 to	check	whether	 inappropriate	variables	or	associations	such	as	race	
or	 gender	 improperly	 feature	within	 the	 tree.	 Regarding	 the	more	 transparent	 and	 intuitive	
probabilistic	methods,28	such	as	Bayes	approaches,	there	are	means	for	the	latent		(the	inferred,	
hidden)	 variables	 that	 form	 part	 of	 the	 model	 to	 be	 uncovered,29	which	 can	 help	 illuminate	
whether	discriminatory	associations	are	being	made.		
	

	
Figure	1:	An	example	decision	tree	for	classifying	fruit30		

In	 terms	 of	 control,	 note	 that	 it	 is	 often	 not	 enough	 simply	 to	 remove	 variables	 of	 possible	
concern	(e.g.	race	in	a	discrimination	context)	from	the	data	source	(or	model),	as	not	only	does	
this	 reduce	 the	 information	 available	 for	 learning,	 but	 these	 variables	 might	 be	 highly	
correlated	 with	 other	 attributes	 of	 the	 dataset	 (e.g.	 postcodes	 that	 represent	 particular	
demographics),31	and/or	the	 issues	may	be	the	result	of	combining	variables	(e.g.	age,	gender	
and	 postcode).32		 Work	 is	 being	 done	 on	 constraining	 the	 learning	 process	 to	 prevent	 such	
improper	features	and	associations	from	being	made.33	

	
When	discussing	ML	as	a	‘black-box’,	artificial	neural	networks34	are	often	the	‘go	to’	example.	A	
common	form	of	neural	network	consists	of	three	layers	each	with	a	number	of	nodes:	an	input	
																																								 																					
27	There	is	work	on	trying	to	constrain	the	size	of	decision	trees	to	maintain	interpretability,	e.g.	Minos	Garofalakis	
et	al.,	‘Building	Decision	Trees	with	Constraints’,	Data	Mining	and	Knowledge	Discovery	7,	no.	2	(n.d.):	187–214.	
28	Datta,	Anupam,	Shayak	Sen,	and	Yair	Zick,	‘Algorithmic	Transparency	via	Quantitative	Input	Influence:	Theory	and	
Experiments	with	 Learning	 Systems’,	 IEEE	Symposium	on	Security	and	Privacy,	 May	 2016;	 Kotsiantis,	 ‘Supervised	
Machine	Learning’.	
29	Nevin	L	Zhang,	Thomas	D	Nielsen,	and	Finn	V	Jensen,	‘Latent	Variable	Discovery	in	Classification	Models’,	Artificial	
Intelligence	 in	 Medicine,	 Bayesian	 Networks	 in	 Biomedicince	 and	 Health-Care,	 30,	 no.	 3	 (March	 2004):	 283–99,	
doi:10.1016/j.artmed.2003.11.004.	
30 	Image	 from	 Michigan	 State	 University,	 CSE	 802	 Pattern	 Recognition	 and	 Analysis	 Lecture	 Notes:	
http://www.cse.msu.edu/~cse802/DecisionTrees.pdf	
31	Toon	 Calders	 and	 Sicco	 Verwer,	 ‘Three	 Naive	 Bayes	 Approaches	 for	 Discrimination-Free	 Classification’,	 Data	
Mining	and	Knowledge	Discovery	21,	no.	2	(27	July	2010):	277–92.	
32	Dino	Pedreshi,	 Salvatore	Ruggieri,	 and	Franco	Turini,	 ‘Discrimination-Aware	Data	Mining’,	 in	Proceedings	of	the	
14th	ACM	SIGKDD	International	Conference	on	Knowledge	Discovery	and	Data	Mining,	KDD	 ’08	(New	York,	NY,	USA:	
ACM,	2008),	560–568.	
33	Calders	 and	 Verwer,	 ‘Three	 Naive	 Bayes	 Approaches	 for	 Discrimination-Free	 Classification’;	 Muhammad	 Bilal	
Zafar	 et	 al.,	 ‘Learning	 Fair	 Classifiers’,	 arXiv:1507.05259,	 19	 July	 2015,	 http://arxiv.org/abs/1507.05259;	 Sara	
Hajian,	Josep	Domingo-Ferrer,	and	Antoni	Martínez-Ballesté,	‘Rule	Protection	for	Indirect	Discrimination	Prevention	
in	Data	Mining’,	 in	Modeling	Decision	for	Artificial	Intelligence,	 Lecture	Notes	 in	Computer	Science	6820	 (Springer,		
2011),	211–22.	
34	B.	Yegnanarayana,	Artificial	Neural	Networks	(PHI	Learning	Pvt.	Ltd.,	2009).	
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layer,	in	which	inputs	are	received	(or	perceived),	a	hidden	layer,	where	various	operations	are	
performed,	 and	 an	 output	 layer	 for	 the	 results.	 Layers	 are	 often	 fully	 interconnected,	where	
each	 node	 in	 one	 layer	 is	 connected	 to	 all	 nodes	 in	 the	 adjacent	 layer	 (see	 Fig	 2a).	 Each	
connection	 is	 associated	 with	 a	 weight,	 such	 that	 a	 node	 receives	 an	 input	 that	 is	 adjusted	
according	 to	 the	weight	of	 the	 connection	 through	which	 it	was	 received.	A	node	performs	a	
calculation	 based	 on	 the	 inputs	 received,	 and	 depending	 on	 the	 result,	 will	 send	 various	
outputs	 to	 its	 connected	 (output)	 nodes.	 Learning	 entails	 adjusting	 the	 weights	 of	 these	
connections,	thereby	refining	the	overall	network.		
	

	 	
(a) A	example	ANN	topology	 (b)	An	 illustration	of	a	hidden	 layer	of	a	neural	network	

for	 digit	 recognition	 (from	 Burrell). 35 	Each	 square	
visually	 represents	 the	 aspects	 of	 the	 handwritten	 digit	
the	node	considers	(akin	to	a	“pixel	heatmap”).		

Figure	2:	Neural	network	illustration	

Neural	 networks	 are	 considered	 opaque	 primarily	 because	 their	 structures	 provide	 little	
insight	into	the	underlying	model.	To	illustrate,	Fig	2b	from	Burrell36	visually	depicts	the	nodes	
of	the	hidden	layer	for	a	handwritten	digit	recognition	neural	network,	by	showing	the	values	
for	 the	 pixels	 that	 each	 node	 considers	 based	 on	 its	 input	 connection	 weights.	 We	 see	 that	
though	 the	 model	 is	 accurate	 in	 its	 classifications,	 it	 is	 far	 from	 intuitive.	 Issues	 of	
interpretability	 are	 exacerbated	 in	 the	 more	 recent	 deep	 learning37	approaches	 that	 entail	 a	
number	of	hidden	layers,	thereby	increasing	complexity.	
	
There	 is,	 however,	 ongoing	 research	 into	 mechanisms	 for	 rule	 extraction,	 to	 assist	 in	
understanding	by	extracting	knowledge	 from	more	opaque	approaches	and	expressing	 it	 in	a	
more	 intelligible	 form,38	such	as	a	decision	tree.39	There	are	also	ways	to	try	to	describe	what	
aspects	of	the	input	led	to	a	particular	decision	(rather	than	describing	the	model	as	a	whole)	
such	as	highlighting	features	of	an	image	that	led	to	a	particular	classification.40	These	assist	in	
assessing	 the	 appropriateness	 of	 the	 model.41	Control	 tends	 to	 be	 more	 challenging	 for	 the	

																																								 																					
35	Jenna	 Burrell,	 ‘How	 the	Machine	 “thinks”:	 Understanding	Opacity	 in	Machine	 Learning	 Algorithms’,	Big	Data	&	
Society	3,	no.	1	(1	June	2016).	

36	See	Ibid.	for	a	detailed	elaboration	of	issues	transparency	in	neural	networks	and	support	vector	machines.	
37	G.	P.	J.	Schmitz,	C.	Aldrich,	and	F.	S.	Gouws,	“ANN-DT:	An	Algorithm	for	Extraction	of	Decision	Trees	from	Artificial	
Neural	Networks,”	IEEE	Transactions	on	Neural	Networks	10,	no.	6	(November	1999):	1392–1401.	
38	For	 an	 overview,	 see	 Jan	 Zilke,	 ‘Extracting	 Rules	 from	 Deep	 Neural	 Networks’,	 TU	 Darmstadt,	 Knowledge	
Engineering	Group,	2015.	
39	G.	P.	J.	Schmitz,	C.	Aldrich,	and	F.	S.	Gouws,	‘ANN-DT:	An	Algorithm	for	Extraction	of	Decision	Trees	from	Artificial	
Neural	Networks’,	IEEE	Transactions	on	Neural	Networks	10,	no.	6	(November	1999):	1392–1401.	
40	Ribeiro,	Singh,	and	Guestrin,	‘"Why	Should	I	Trust	You?’	
41	Ibid.	

output layer input layer 
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for the computer processor on the other. Where an
algorithm does the ‘programming’ (i.e. optimally calcu-
lates its weights) then it logically follows that being
intelligible to humans (part of the art of writing code)
is no longer a concern, at least, not to the non-human
‘programmer.’

The primary purpose of this first example is to give a
quick, visual sense of how the machine ‘thinks.’
Figure 4(a) should appear unintuitive, random, and
disorganized. However, handwriting recognition specif-
ically is not a ‘conscious’ reasoning task in humans
either. Humans recognize visual elements in an imme-
diate and subconscious way (thus there is certainly a
kind of opacity in the human process of character rec-
ognition as well). Such an example may not seem to
provide much insight into broader real-world questions
about discrimination in classification. However, a
recent case where automated classification in Google
Photos labeled a set of photos of African-American
people as ‘Gorillas’ suggests otherwise.11 To further
the argument, my next example, spam filtering, looks
at the automation of a task that calls upon a more
conscious form of human reasoning. As a matter relat-
ing to core communication capabilities of the Internet, I
show how spam filtering is of relevance to questions of
classificatory discrimination.

The opacity of spam filtering

Spam has no fixed and indisputable definition
(Brunton, 2013). It is generally understood to be unwel-
come emails, especially those sent in bulk, but this is, in
part, a designation by network administrators con-
cerned particularly with overtaxing network resources.

Spam filtering is, for this reason among others, a better
application domain for thinking about machine learn-
ing based classification as socially consequential.
Messages that are categorized as spam are messages
that do not get through to their intended recipients.
Consequently, this example relates more directly to
ongoing conversations about the politics of search,
ranking, and filtering content. Where a legitimate mes-
sage is categorized as spam (a ‘false positive’), this is a
message that has, in effect, been unwittingly censored.
One question is whether the design of spam filters could
make certain individuals more susceptible to having
their legitimate messages diverted to spam folders.
For example, does being located in a hotbed of
Internet fraud or spam activity, say West Africa
(Nigeria or Ghana) or Eastern Europe, create a ten-
dency for one’s messages to be mislabeled as spam?

In Ng’s Coursera course, support vector machines
(SVMs) are the machine learning model used to imple-
ment spam filtering. SVMs are another type of machine
learning model like neural networks and either model
could be used for spam filtering. The simplified version
used in the Coursera course does not use the ‘kernel
trick,’ a computational technique characteristic of
SVMs, so it is essentially a form of linear regression;
in technical terms it uses a ‘linear kernel.’ As an add-
itional simplification, the programming exercise relies
solely on the contents of the email to train a spam clas-
sifier, that is, the words contained in the message alone,
and no email header information. These words are ana-
lyzed by the ‘learner’ algorithm to determine a set of
weights. These weights measure the degree to which a
given word is associated with ‘spam’ vs. ‘ham’ (non-
spam) emails. Such an approach is described as a ‘bag

Figure 4. (a) The hidden layer: the black areas in each box are the areas (strokes or other patterns) that a particular hidden layer
node cues in on in a handwritten digit. (b) This shows the result of the same learning algorithm being run a second time with the same
training data. The reason (a) and (b) are not identical is because of the random initialization step that defines the set of weights initially
to very small random numbers.
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more	 opaque	models;	 though	 there	 is	 continuing	work	 on	 general	means	 for	 improving	 and	
providing	control	(such	as	‘fairness’)	across	approaches.42	
	 	
It	 is	worth	noting	that	often	several	ML	approaches	or	models	are	combined	in	an	attempt	to	
improve	overall	 accuracy.	This	 is	known	as	ensemble	learning.43	Common	approaches	 include	
bagging	and	boosting,	which	 involve	varying	 training	sets	 for	each	approach,	 the	 latter	based	
on	the	results	of	other	learners,44	and	stacking	in	which	the	outputs	of	several	approaches	are	
combined	 by	 another	 learning	 algorithm.45	Ensembles	 can	 increase	 levels	 of	 complexity;	 the	
degree	of	transparency	and	control	will	depend	on	the	nature	of	the	particular	ensemble.	
	

2.2	Learning	approaches	
	
Often	algorithms	are	categorised	according	to	the	class	of	learning	approach	they	take.	
	
Supervised	 learning46 	involves	 learning	 from	 input	 data	 that	 is	 labelled	 with	 the	 desired	
output/result.	 For	 example,	 there	may	 be	 a	 set	 of	 images	 of	 skin	 lesions,	 with	 some	 lesions	
labelled	as	malignant,	others	benign.	The	 learning	process	 involves	using	 labels	to	attempt	to	
infer	a	model	that	can	be	applied	to	new	data;	here,	to	learn	what	aspects	of	the	image	support	
a	malignant	or	benign	diagnosis.	
	
Unsupervised	Learning47	is	where	there	are	no	desired	outcomes/results	associated	with	inputs	
to	guide	the	learning	process;	i.e.	data	is	unlabelled.		Unsupervised	approaches	are	used	to	find	
patterns	 and	 relationships	 based	 on	 the	 characteristics	 of	 the	 data.	 Such	 techniques	 suit	
clustering	problems,	separating	inputs	into	‘like	groups’,	and	dimensionality	reduction,	to	help	
reduce	the	number	of	variables	that	require	consideration.	As	such,	unsupervised	approaches	
are	useful	 for	data	mining,	and	can	be	effective	in	assisting	in	preparing	and	labeling	data	for	
use	with	supervised	learning	techniques.48	
	
Reinforcement	learning	differs	from	supervised/unsupervised	learning	as	it	is	action-oriented:	
here	 the	algorithm	will	 take	an	action,	 the	consequences	of	which	are	evaluated	by	a	reward	
function.	49	A	 model	 is	 formed	 by	 the	 ML	 process	 learning	 the	 actions	 to	 take	 in	 order	 to	
maximize	its	reward.	Reinforcement	learning	is	often	used	in	control	systems,	e.g.	for	robotics	
and	game	systems,	for	instance,	the	work	by	DeepMind	in	combining	reinforcement	and	deep	
learning	approaches	to	excel	at	video	games.50		
																																								 																					
42	Zafar	et	al.,	‘Learning	Fair	Classifiers’.	
43	David	Opitz	and	Richard	Maclin,	‘Popular	Ensemble	Methods:	An	Empirical	Study’,	Journal	of	Artificial	Intelligence	
Research	11	(1999):	169–198.	
44	Eric	Bauer	and	Ron	Kohavi,	‘An	Empirical	Comparison	of	Voting	Classification	Algorithms:	Bagging,	Boosting,	and	
Variants’,	Machine	Learning	36,	no.	1–2	(n.d.).	
45	David	H.	Wolpert,	‘Stacked	Generalization’,	Neural	Networks	5	(1992):	241–259.	
46	Trevor	 Hastie,	 Robert	 Tibshirani,	 and	 Jerome	 Friedman,	 The	 Elements	 of	 Statistical	 Learning:	 Data	 Mining,	
Inference,	 and	Prediction,	 Second	Edition,	 2nd	 ed.	 2009.	 Corr.	 7th	 printing	 2013	 edition	 (New	 York,	 NY:	 Springer,	
2011).	
47	Zoubin	 Ghahramani,	 ‘Unsupervised	 Learning’,	 in	 Advanced	 Lectures	 on	 Machine	 Learning,	 Lecture	 Notes	 in	
Computer	Science	3176	(Springer	Berlin	Heidelberg,	2004),	72–112.	
48	Semi-supervised	learning	combines	supervised	and	unsupervised	approaches,	typically	where	there	is	a	small	set	
of	labelled	data	(perhaps	due	to	the	cost	of	labeling),	which	helps	direct	the	analysis	concerning	the	larger	mass	of	
unlabelled	data.	See	Olivier	Chapelle,	Bernhard	Schlkopf,	and	Alexander	Zien,	Semi-Supervised	Learning,	1st	ed.	(The	
MIT	Press,	2010).	
49	Though	methods	can	also	be	combined	and	 in	some	cases	reformulated.	For	 instance,	a	reward	 function	can	be	
built	based	on	the	labels	of	the	supervised	learning	model	(Andrew	G.	Barto	et	al.,	 ‘Reinforcement	Learning	and	Its	
Relationship	to	Supervised	Learning’,	in	Handbook	of	Learning	and	Approximate	Dynamic	Programming	(John	Wiley	
&	Sons,	Inc.,	2004),	45–63.	)	
50	Volodymyr	Mnih	et	al.,	 ‘Human-Level	Control	 through	Deep	Reinforcement	Learning’,	Nature	518,	no.	7540	(26	
February	2015):	529–33.	
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Given	the	current	focus	on	‘big-data’	applications,	reinforcement	learning	is	less	common	than	
supervised/semi/unsupervised	approaches.	However,	it	is	relevant	to	this	discussion	not	only	
because	 it	 paves	 the	 way	 for	 more	 ‘autonomous	 agents’,	 but	 also	 because	 the	 evaluation	
function	and	range	of	possible	actions	represent	points	for	designer	control.	In	situations	such	
as	video	games,	much	of	this	is	defined	by	the	possible	directions/inputs	of	the	controller,	and	
the	rules	of	the	game.	Moving	forward,	the	actions	that	may	be	taken	must	be	appropriate	for	
the	context	in	which	the	system	will	operate	(see	§4).		
	
Offline	(batch)	and	online	methods51	
	
Many	 learning	 approaches	 are	offline	 (or	batch)	 in	 nature,	 in	 that	 they	 use	 defined	 set(s)	 of	
fully-available	data	in	order	to	build	a	generalizable	model.52	Online	methods	differ	by	taking	a	
sequential	approach	to	learning,	by	using	individual	data	points:	the	model	is	presented	a	data	
item,	 and	 depending	 on	 the	 error/cost	 of	 the	model’s	 hypothesis	 to	 that	 item,	may	 result	 in	
refinement.	In	this	way,	the	model	reflects	the	data	the	learner	has	seen	so	far.53		
	

2.3	Model	fit	and	evaluation	
	
Clearly	 it	 is	 important	to	rigorously	test	and	evaluate	any	learned	model,	 to	explore	 its	 fit	 for	
purpose.	In	practice,	often	a	number	of	different	algorithms	will	be	tried	and	evaluated	in	order	
to	select	an	approach	(or	ensemble)	that	best	suits	the	particular	problem	area.	
	
Evaluating	 a	model	 concerns	 its	 alignment	with	 the	 general	 underlying	 trend(s)	 in	 the	 data.	
This	 entails	 examining	 outputs	 to	 measure	 a	 model’s	 performance	 (error),54	which	 includes	
checking	for	underfit	(bias),	where	the	model	fails	to	sufficiently	capture	the	trends	in	the	data,	
and	 overfit	 (variance)	where	 the	model	 is	 overly	 tuned	 to	 the	 data	 on	which	 the	model	was	
built,	thereby	reducing	its	general	applicability.			
	
In	supervised	learning,	model	evaluation	typically	involves	splitting	the	labelled	data	into	that	
used	for	testing	and	that	for	training.	The	algorithms	operate	on	the	training	data	to	build	the	
model.	 Accuracy	 is	 evaluated	 by	 applying	 the	 model	 against	 the	 test	 data,	 i.e.	 ‘new’	 data	
previously	unseen	by	the	model,	and	comparing	outputs	with	the	relevant	labels.	The	closeness	
of	fit	of	the	model	to	the	training	data	is	useful	for	detecting	underfit,	and	closeness	to	the	test	
data	for	detecting	overfit.55	
	
Evaluating	 the	 results	 of	 an	 unsupervised	 learning	 approach	 often	 relates	 to	 the	 degree	 of	
separation	between	clusters	(high	intra-cluster	similarity,	 low	inter-cluster	similarity)	and/or	
considering	 various	 statistical	 features	 of	 the	 data/model.	 This	 can	 involve	 using	 test	 and	

																																								 																					
51	Note	that	here,	 the	terms	 ‘online’	and	 ‘offline’	are	unrelated	to	notions	of	networks	and	communication,	such	as		
“being	on	the	Internet.”	Further,	‘online’	does	not	imply	real-time	learning!	
52	For	more	detail	 on	online	 and	offline	 learning,	 see:	Ofer	Dekel	 and	Yoram	Singer,	 ‘Data-Driven	Online	 to	Batch	
Conversions’,	in	Advances	in	Neural	Information	Processing	Systems	18,	ed.	Y.	Weiss,	B.	Schölkopf,	and	J.	C.	Platt	(MIT	
Press,	2006),	267–274,	http://papers.nips.cc/paper/2775-data-driven-online-to-batch-conversions.pdf.	
53	N.	C.	Oza,	 ‘Online	Bagging	and	Boosting’,	 in	2005	IEEE	International	Conference	on	Systems,	Man	and	Cybernetics,	
vol.	3,	2005,	2340–2345.	
54	Hastie,	Tibshirani,	and	Friedman,	The	Elements	of	Statistical	Learning.	
55	There	are	methods	that	aim	at	improving	a	model’s	performance	(test	error)	estimates.	A	common	approach	is	k-
fold	cross-validation,	which	involves	partitioning	the	data	into	a	number	of	sets,	then	iteratively	running	the	training	
exercise	 using	 different	 sets	 for	 training	 and	 testing,	 with	 the	 error	 averaged	 over	 all	 iterations.	 This	 aims	 at	
reducing	the	propensity	for	overfit	and	is	particularly	useful	in	situations	where	data	is	limited,	though	the	iterations	
introduce	 extra	 computational	 cost.	 See	 Ron	 Kohavi,	 ‘A	 Study	 of	 Cross-Validation	 and	 Bootstrap	 for	 Accuracy	
Estimation	and	Model	Selection’,	 in	Proceedings	of	the	14th	International	Joint	Conference	on	Artificial	Intelligence	-	
Volume	2,	IJCAI’95,	1137–1143.	
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training	data,	but	as	data	 is	unlabelled	 the	comparison	concerns	whether	 inputs	with	similar	
characteristics	are	treated	in	a	similar	manner.		
	
In	 reinforcement	 learning,	 performance	 relies	 heavily	 on	 the	 appropriateness	 of	 the	 reward	
functions,	 and	 the	 range	 of	 possible	 actions	 the	 system	 is	 allowed	 to	 take.	 It	 follows	 that	
simulation	has	a	 role	 to	play,	providing	a	 test	environment	 to	help	validate	 that	behaviour	 is	
proper.	 Clearly,	 any	 simulation	 environment	 must	 be	 sufficiently	 representative	 of	 the	
environment	in	which	the	model	will	operate.		
		
Note	 also	 that	 re-evaluation	 may	 be	 necessary,	 for	 instance,	 where	 the	 data	 distribution	
underlying	the	application	domain	changes	(see	§3.2	and	§4.2).	
	
From	a	responsibility	perspective,	 there	 is	more	 to	consider	than	 just	 the	performance	of	 the	
learned	model.			
	
Depending	 on	 the	 application	domain,	 explainability	may	well	 be	 a	 significant	 consideration,	
which	 may	 arise,	 for	 example,	 from	 data	 protection	 obligations.56	This	 would	 impact	 model	
assessment,	perhaps	precluding	the	use	of	particular	approaches	(even	if	more	accurate!)	and	
may	 warrant	 the	 use	 of	 knowledge	 extraction	 techniques	 (the	 outputs	 of	 which	 would	 also	
require	assessment	and	evaluation).			
	
Further,	in	many	contexts,	intuition	and	input	from	domain	experts	will	play	an	important	role	
in	validating	models	and	their	results.	 In	an	unsupervised	learning	environment,	 for	instance,	
external	validation	can	assist	in	determining	whether	the	clusters	appear	sensible;	e.g.	whether	
a	series	of	news	articles	grouped	by	topic	and/or	source.	Any	intervention	by	domain	experts,	
or	 individuals	 in	general,	represents	a	point	of	where	responsibility	may	lie.	Who	is	 involved,	
their	level	of	expertise	and	the	nature	of	their	involvement	appear	relevant	considerations.		

3.	The	role	of	data	
	
ML	is	data	driven:	(1)	the	data	involved	in	the	training/learning	phases	determines	the	model,	
and	(2)	the	live	data	on	which	the	model	is	applied	determines	the	results/outcomes.		
	
In	 terms	of	 responsibility,	managing	 the	data	 exposed	 to	 a	ML	process	 represents	 a	 point	 of	
control.	 At	 one	 end	 of	 a	 continuum,	 control	 may	 be	 absolute,	 determining	 the	 precise	 and	
complete	data	used	when	the	algorithm	is	learning	and	live.	At	the	other	end,	control	becomes	
more	indirect	and	might	include	decisions	about	the	deployment	location	of	sensors	to	collect	
data	directly	from	their	environment	or	the	design	and	configuration	of	a	sensor.	Whatever	the	
scenario,	there	is	generally	the	possibility	to	design	in	a	capability	to	exercise	some	degree	of	
control	over	input	data.			

3.1	Data	for	learning	
	
As	§2	described,	ML	algorithms	use	input	data	to	learn	a	representative	model.	Therefore	for	a	
model	 to	be	appropriate,	 the	data	used	to	build	the	model	must	properly	reflect	the	domain	in	
which	the	model	will	be	applied.	This	includes	ensuring	that	there	is	appropriate	coverage,	in	the	
sense	that	the	data	is	sufficiently	rich	to	enable	a	proper	model	to	be	formed,	and	considering	
issues	 of	 selection	 (sampling)	 bias,	 whether	 the	 data	 accurately	 represents	 that	 of	 the	
underlying	problem	domain.	Consider	an	employment	application;	if	the	recommender	system	
was	 built	 on	 data	 concerning	 Cambridge	 Dons,	 the	 learned	 model	 would	 favour	 a	 very	
particular	 demographic.	 For	 the	 purposes	 of	 a	 study	 into	 algorithmic	 explanation,	 a	 neural	

																																								 																					
56	Kamarinou	and	Millard,	‘Machine	Learning	with	Personal	Data’.	
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network	 for	distinguishing	between	pictures	of	wolves	and	huskies	was	(deliberately)	poorly	
trained,57	where	every	picture	of	a	wolf	had	snow	in	the	background,	whereas	the	huskies	did	
not.	The	model	built	would	work	to	classify	anything	with	snow	in	the	background	as	a	wolf,	
regardless	of	the	animal,	its	pose,	etc.		
	
It	 follows	 that	 the	 efforts	 concerning	 the	 data:	 selection,	 cleansing,	 feature	 selection	 and	
engineering	–	determining	 the	 input	data	 to	 the	ML	algorithm	–	 are	 considered	key	 to	ML	 in	
practice. 58 	This	 involves	 aspects	 of	 data	 selection,	 representation,	 transformation,	 and	
processing,59	as	 appropriate	 for	 both	 the	 ML	 technique	 and	 the	 learning	 goals.	 To	 quote	
Domingos:60		
	

“First-timers	are	often	surprised	by	how	little	time	in	a	machine	learning	project	is	spent	actually	
doing	machine	 learning.	 But	 it	makes	 sense	 if	 you	 consider	 how	 time-consuming	 it	 is	 to	 gather	
data,	 integrate	 it,	 clean	 it	 and	pre-process	 it,	 and	how	much	 trial	 and	 error	 can	go	 into	 feature	
design.”		

	
He	goes	on	to	note	that	learning	is	an	iterative	process,	that	often	requires	re-engineering	the	
data	 and	 repeating	 the	 learning	 processes.	 It	 is	 therefore	 natural	 that	 there	 is	 work	 on	
automating	 feature	selection,	e.g.	by	using	 learning	techniques	that	can	help	 identify	relevant	
features	in	datasets.61	
	
Feature	 engineering	 focuses	 on	 technical	 aspects	 of	 learning.	 However,	 there	 are	 associated	
responsibility	implications	to	ensure	the	data	is	(and	remains)	representative	and	appropriate	
to	the	area	in	which	it	will	apply	(thereby	influencing	the	model),	and	the	data	usage	accords	
with	any	data	protection	(e.g.	purpose	limitation)	or	other	legal	or	regulatory	obligations	(e.g.	
non-disclosure).62		
	
The	 volume	 of	 data	 is	 also	 important.	 A	 sample	 of	 insufficient	 size	will	 be	 unrepresentative,	
making	it	more	difficult	to	detect	situations	of	under/overfit.		
	
In	specialised	areas,	such	as	medicine	and	cybersecurity	for	example,	domain-specific	expertise	
will	also	be	required	–	both	to	generate	and	provide	data	as	input,	in	addition	to	assisting	in	the	
design	 process,	 such	 as	 assessing	 the	 value	 and	 appropriateness	 of	 outputs.	 In	 practice	 it	 is	
prudent	to	have	redundancy,	i.e.	having	several	opinions	in	an	attempt	to	minimise	error/bias.	
	
Such	concerns	are	relevant	 for	all	 learning	approaches	(§2.3).	Supervised	 learning	 introduces	
an	extra	consideration,	 to	ensure	 that	data	 is	properly	 labelled.	 In	practice,	 the	processing	of	
labelling	can	be	outsourced.	It	is	not	uncommon	to	see	jobs	advertised	on	Amazon’s	Mechanical	
Turk63	that	offer	people	a	small	sum	to	label	particular	data,	and	CAPTCHAs	–	simple	tasks	for	
humans	that	attempt	to	filter	for	 ‘bots’	–	can	double	as	a	 labelling	tool.64	These	crowdsourced	

																																								 																					
57	Ribeiro,	Singh,	and	Guestrin,	‘"Why	Should	I	Trust	You?’.	
58	Andrew	Ng:	“Applied	machine	learning	is	basically	feature	engineering”	
http://ai.stanford.edu/~ang/slides/DeepLearning-Mar2013.pptx	
59	Possibly	including	accounting	for	sampling	error:	Corinna	Cortes	et	al.,	‘Sample	Selection	Bias	Correction	Theory’,	
in	Algorithmic	Learning	Theory,	 ed.	 Yoav	 Freund	 et	 al.,	 Lecture	Notes	 in	 Computer	 Science	 5254	 (Springer	 Berlin	
Heidelberg,	 2008),	 38–53;	 Aditya	 Khosla	 et	 al.,	 ‘Undoing	 the	 Damage	 of	 Dataset	 Bias’,	 in	Computer	Vision	–	ECCV	
2012,	 ed.	 Andrew	 Fitzgibbon	 et	 al.,	 Lecture	 Notes	 in	 Computer	 Science	 7572	 (Springer	 Berlin	 Heidelberg,	 2012),	
158–71.	
60	Pedro	 Domingos,	 ‘A	 Few	 Useful	 Things	 to	 Know	 About	 Machine	 Learning’,	 Commun.	 ACM	 55,	 no.	 10	 (October	
2012):	78–87.	
61	A	Coates,	H	Lee,	and	AY	Ng,	 ‘An	Analysis	of	Single-Layer	Networks	 in	Unsupervised	Feature	Learning’,	AISTATS,	
2011.	
62	Kamarinou	and	Millard,	‘Machine	Learning	with	Personal	Data’.	
63	http://www.mturk.com	
64	http://www.google.com/recaptcha/intro/index.html	
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approaches	 suit	 simple	 perception	 tasks	 such	 as	 describing	 what	 is	 in	 an	 image,	 and	 are	
particularly	useful	where	there	are	large	volumes	of	data	to	label.	In	more	complex	application	
domains,	expert	opinion	may	be	required	for	labelling.	Again,	redundancy	can	be	used	to	deal	
with	 issues	 of	 label	 quality,	 where	 inputs	 are	 separately	 labelled	 several	 times	 by	 different	
parties.	This	helps	in	gaining	consensus,	or	indeed,	in	identifying	interesting	edge	cases.	
	
As	noted	earlier,	issues	of	responsibility	and	control	will	arise	with	respect	to	the	appropriate	
choice	of	experts,	as	well	as	how	that	expertise	 is	discharged.	While	transparency	obligations	
regard	data	input,	any	labeling	practices	and	the	use	of	experts	would	facilitate	accountability.	

3.2	Data	in	the	wild	
	
Any	 model	 built	 for	 practical	 deployment65	will	 operate	 on	 real-world	 data.	 As	 such,	 it	 is	
important	 to	ensure	 that	 (1)	 the	model	 remains	 representative,	and	 (2)	 the	data	provided	 to	
the	model	is	constrained	appropriately.		
	
Ongoing	representativeness	
	
We	have	outlined	how	a	model	is	learned	from	data:	for	a	model	to	be	both	accurate	and	useful,	
that	 data	 on	which	 it	 was	 built	must	 be	 suitably	 representative	 of	 the	 domain	 in	which	 the	
model	will	be	applied.	However,	 in	the	real	world,	things	change;	over	time,	the	properties	of	
the	data	distribution	may	change	and	evolve	(concept	drift),	 rendering	a	once	accurate	model	
obsolete.66	Such	a	change	may	be	gradual	or	sudden,	and	occur	in	a	wide	range	of	application	
domains	–	particularly	notable	are	areas	such	as	spam,	intrusion	and	fraud	detection,	where	an	
adversary	directly	attempts	to	circumvent	a	model.67		
	
It	 is	therefore	important	to	monitor	and	evaluate	the	properties	and	nature	of	the	data	of	the	
application	domain,	so	that	models	can	be	updated	where	necessary	(see	§4.2).	Towards	this,	
there	are	methods	for	detecting,68	and	learning	approaches	that	account69	for	concept	drift.	
	
Input	constraints	
	
Recall	the	example	of	Tay,	Microsoft’s	Twitter	bot	that	would	take	tweets	as	input	data	and	use	
these	 to	produce	her	own	 tweets.	Tay	presented	a	 teenage	persona,	demonstrating	a	natural	
language	capability	using	millennial	slang.70	However,	once	‘live,’	Tay	took	as	input	tweets	from	
a	variety	of	Internet	trolls,	which	in	turn	resulted	in	Tay’s	tweets	becoming	foul-mouthed	and	
racist.71		
	
In	practice,	the	appropriate	measures	will	depend	on	the	context	in	which	the	system	operates.	
In	the	Twitter	example,	such	an	outcome	is	rather	foreseeable	given	notoriety	of	Internet	trolls.	
This	 situation	 could	 have	 been	mitigated	 through	 data	management	 techniques;	 very	 simple	

																																								 																					
65	cf.	those	purely	aimed	at	research.	
66	See:	Alexey	Tsymbal,	 ‘The	Problem	of	Concept	Drift:	Definitions	and	Related	Work’,	Tech.	report,	Department	of	
Computer	Science,	Trinity	College	Dublin,	(2004).	
67 	Indrė	 Žliobaitė,	 ‘Learning	 under	 Concept	 Drift:	 An	 Overview’,	 arXiv:1010.4784	 [Cs],	 22	 October	 2010,	
http://arxiv.org/abs/1010.4784.	
68	Maayan	 Harel	 et	 al.,	 ‘Concept	 Drift	 Detection	 Through	 Resampling’,	 in	 International	 Conference	 on	 Machine	
Learning	(ICML-14),	2014,	1009–17.	
69	For	links	to	a	range	of	approaches,	see:	Yamini	Kadwe	and	Vaishali	Suryawanshi,	‘A	Review	on	Concept	Drift’,	OSR	
Journal	of	Computer	Engineering	17,	no.	1	(2015):	20–26.	
70	http://www.digitaltrends.com/social-media/microsoft-tay-chatbot/	
71	Horton,	‘Microsoft	deletes	“teen	girl”	AI	after	it	became	a	Hitler-loving	sex	robot	within	24	hours’.	
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approaches	could	include	filtering	tweets	based	on	the	types	of	words	used,72	or	only	accepting	
tweets	 from	 preselected	 or	 reputable	 users	 (e.g.	 based	 on	 number	 of	 followers,	 number	 of	
tweets).	

3.3	Responsibility	and	data	management		
	
From	 the	 above,	 we	 see	 there	 are	 two	 key	 concerns:	 quality	 –	 the	 (continued)	
representativeness	of	the	data	and	any	metadata	(labels),	and	constraints	–	to	ensure	that	only	
the	 appropriate	 data	 is	 used	 as	 input.	 Data	 quantity	 is	 perhaps	 best	 seen	 as	 a	 dimension	 of	
quality	rather	than	its	own	criterion;	since	more	data	may,	or	may	not	necessarily,	mean	better	
quality.73	
	
This	relates	to	responsibility.	Data	input	selection	represents	a	point	for	intervention,	allowing	
the	ML	processes	 to	 be	managed	by	way	 of	 the	 data	 used,	 even	 if	 the	 inner	workings	 of	 the	
algorithm	are	fairly	opaque.		
	
Beyond	 the	 specific	 statistical/feature	 engineering	 considerations,	 ongoing	 systems	 research	
may	 assist	with	managing	 the	 responsibilities	 associated	with	 data	 used	 in	ML.	We	 indicate	
some	areas	of	 this	 in	§6;	 in	short,	 there	 is	work	on	data	provenance	 to	 illuminate	 the	origins	
and	 path	 of	 data,	 useful	 for	 assessing	 the	 quality,	 reliability	 and	 representativeness	 of	 data;	
particularly	where	data	is	combined	from	a	number	of	sources.	Differential	privacy	techniques74	
are	 relevant	 where	 data	 is	 personal	 (see	 §6).	 General	 security	 mechanisms	 such	 as	 access	
controls	are	also	relevant,	 for	example,	 to	set	bounds	on	the	 inputs	of	data	 to	a	deployed	ML	
system.	
	

3.4	Where	does	the	value	lie?	
	
While	the	algorithm	and	the	models	it	learns	are	seen	as	being	where	the	value	resides	in	ML,	
the	data	is	often	viewed	as	a	free	or	under	protected	raw	material	within	the	process.	In	reality,	
an	algorithm	and	its	model	are	intrinsically	tied	to	the	data	used	as	part	of	the	model	building	
process.		
	
In	 terms	 of	 public	 law	 treatment,	 an	 ML	 algorithm,	 as	 a	 form	 of	 computer	 program,	 would	
usually	 be	 automatically	 protectable	 as	 a	 copyright	 work	 and	 potentially	 a	 patentable	
invention.75	By	 contrast,	 data	 input	 into	 a	ML	 system	would	 generally	 only	be	protected	 as	 a	
‘compilation’	in	copyright	or	a	‘database’	if	the	data	set	had	been	assembled	in	an	appropriate	
manner.76	In	 terms	of	 the	 learned	model,	 i.e.	 the	output	 from	the	ML	algorithm	and	 the	 input	
data,	 English	 law	 recognizes	 the	 concept	 of	 a	 ‘computer-generated’	 work,	 which	 grants	
copyright	authorship	to	“the	person	by	whom	the	arrangements	necessary	for	the	creation	of	
the	work	are	undertaken”;77	as	well	as	being	protectable	as	a	form	of	confidential	information.78		

																																								 																					
72 	For	 example,	 a	 ‘swear	 filter’	 was	 introduced	 for	 IBM’s	 Watson	 after	 it	 had	 learned	 slang	 from	
UrbanDictionary.com:	 http://www.ibtimes.com/ibms-watson-gets-swear-filter-after-learning-urban-dictionary-
1007734	
73	http://www.datasciencecentral.com/profiles/blogs/7-cases-where-big-data-isn-t-better	
74	Cynthia	Dwork,	‘Differential	Privacy:	A	Survey	of	Results’,	in	Theory	and	Applications	of	Models	of	Computation,	ed.	
Manindra	Agrawal	et	al.,	Lecture	Notes	in	Computer	Science	4978	(Springer	Berlin	Heidelberg,	2008),	1–19.	
75	Copyright	Designs	and	Patents	Act	1988	(“CDPA’),	s.	3(1)(b)	and	the	Patents	Act	1977,	s.	1(2)(c).	While	the	latter	
states	that	“a	scheme,	rule	or	method	for	performing	a	mental	act,	playing	a	game	or	doing	business,	or	a	program	
for	 a	 computer”	 is	 not	 patentable	 subject	matter,	 this	 is	 limited	 to	where	 the	 application	 relates	 to	 that	 thing	 ‘as	
such’,	which	permits	certain	software-implemented	inventions.	See	generally	Abbott,	R.,	“’I	think,	therefore	I	invent:	
Creative	computers	and	the	future	of	patent	law’,	Boston	College	Law	Review,	vol.	57,	no.	4,	2016.		
76	A	 ‘compilation’	 is	 recognised	 as	 a	 ‘literary	work’	 at	 CDPA,	 s.	 3(1)(a),	while	 a	 ‘database’	 is	 protected	 under	 the	
Copyright	and	Rights	in	Databases	Regulations	1997	(No.	3032).		
77	CDPA	at		s.	9(3)	and	178.	
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In	terms	of	private	law,	data	banks	and	data	brokers	will	be	able	to	control	the	use	of	their	data	
collections	 through	 contract	 or	 licence	 agreements;	 although	public	 law	 intervention	may	be	
required	 where	 such	 mechanisms	 have	 adverse	 public	 interest	 impacts,	 such	 as	 anti-
competitive	 consequences,	 although	 it	 could	 potentially	 include	 the	 effectiveness	 of	 an	 ML	
system.		
	
While	 it	 is	 beyond	 the	 scope	 of	 this	 paper	 to	 examine	 the	 interaction	 between	 ML	 and	
intellectual	property	laws,	it	 is	worth	noting	that,	to	the	extent	that	the	legal	treatment	of	the	
different	 components	 of	 the	 ML	 process	 varies,	 it	 will	 impact	 the	 value	 of	 each	 component	
which	may,	in	turn,	have	an	impact	on	the	responsibility	for,	and	control	exercised	over,	each	
component.	

4.	Systems	and	processes	
	
The	 previous	 discussion	 largely	 focused	 on	 the	 ML	 itself.	 The	 practical	 effects,	 however,	
concern	the	deployment	of	the	technology,	as	it	is	integrated	into	workflows	and	into	broader	
systems.		

4.1	Workflows	&	processes	
	
Integrating	ML	into	a	workflow	entails	its	operation	on	particular	data,	in	a	particular	context,	
the	outputs	of	which	bring	about	a	particular	result.79	
	
A	human	in	the	loop	
	
Some	 ML	 processes	 will	 require	 people	 to	 be	 directly	 involved.	 This	 might	 be	 to	 select	 the	
appropriate	 inputs	 to	 feed	 into	 the	ML	process,	or	 to	 revert	back	 to	humans	when	particular	
situations	arise,	e.g.	to	ask	for	clarification	or	a	judgment	to	be	made,	or	even	explicitly	to	hand	
back	control	given	 the	gravity	of	 the	particular	context	or	decision,	such	as	whether	 to	apply	
lethal	force.80	ML	outputs	may	also	directly	feed	back	to	an	individual.	Recommender	systems	
are	a	clear	example,	such	as	IBM’s	Watson,	that	can	provide	physicians	with	a	list	of	“potential	
diagnoses	 along	 with	 a	 score	 that	 indicates	 the	 level	 of	 confidence	 for	 each	 hypothesis.”81	
Where	 the	outputs	of	a	ML	system	are	 to	an	 individual,	 it	allows	a	human	 to	decide	 the	next	
steps	(and	take	consequent	responsibility).		
	
It	 follows	 that	having	a	human	 in	 the	 loop	represents	a	 clear	point	 for	exercising	 judgement,	
intervention	and	control.		
	
There	are,	of	course,	concerns	as	 to	 the	degree	of	agency:	does	the	person	 just	blindly	 follow	
the	 machine?;	 does	 one	 have	 sufficient	 information	 to	 inspect	 and	 verify	 the	 quality	 of	 the	
output?82	Further,	there	are	questions	as	to	whether	it	is	appropriate	to	defer	to	a	person	in	the	

																																								 																																								 																																								 																																								 																												
78	See	generally	Gurry	on	Breach	of	Confidence	(Eds.	Aplin,	Bently,	Johnson	and	Malynicz),	OUP,	2012.	
79	§3	considered	input	data,	which	must	be	within	scope	of	the	data	in	which	the	model	was	trained.	In	this	section,	
we	focus	more	on	the	practical	effects	of	ML	outputs.	
80	For	instance,	the	US	Department	of	Defense	Directive	3000.09	(2012)	states	“Autonomous…	weapon	systems	shall	
be	designed	to	allow…	appropriate	levels	of	human	judgment	over	the	use	of	force.”	
81	http://www-05.ibm.com/innovation/uk/watson/watson_in_healthcare.shtml	
82	This	will	depend	on	the	ML	technique	used.	IBM’s	Watson	allows	inspection	by	presenting	the	documents	forming	
the	basis	for	the	decision.	There	is	also	work	on	more	general	mechanisms	to	provide	insight	into	how	one	particular	
decision/output	was	made,	 in	order	 to	 improve	 levels	of	user	 trust	 in	 the	 ‘machine’:	Ribeiro,	Singh,	and	Guestrin,	
‘"Why	Should	I	Trust	You?’	
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first	 place	 or,	 indeed,	 whether	 it	 may	 be	 more	 appropriate	 to	 appeal	 to	 a	 machine!83	Such	
considerations	will	depend	on	the	circumstances;	however,	having	a	person	explicitly	included	
in	the	workflow	represents	a	clear,	well-established	point	of	responsibility.	
	
Automated	environments	
	
Systems	may	also	be	constructed	such	that	ML	outputs	automatically	result	in	actions	–	moving	
through	workflow	processes	–	without	direct	human	 involvement.	This	can	make	assessment	
and	intervention	more	difficult	as	actions	are	taken	in	real-time	without	the	defined	‘stopping	
points’	in	which	systems	defer	to	humans.		
	
This	 becomes	 particularly	 relevant	 in	 the	 context	 of	 the	 emerging	 Internet	 of	Things	 (IoT)	 –	
which	aims	towards	seamlessness,	automation	and	personalisation	–	in	an	environment	where	
‘things’	have	mass	and	velocity,	whereby	actuations	effect	changes	in	the	physical	world.84	For	
instance,	 there	 are	 visions	 for	 personal	 digital	 assistants	 that	 automatically	 control	 one’s	
surrounding	environment,	 such	as	 the	 lighting,	heating,	music,	 and	much,	much	more,	based,	
for	 instance,	 on	 learned	 individual	 preferences	 and	 current	 context	 such	 as	 an	 individual’s	
mood.85	These	agents	could	potentially	conflict,	giving	rise	to	disputes	over	control	hierarchies,	
e.g.	who	is	‘in	charge’	of	the	family	home?	
	
The	 potential	 for	 harm	 can	 be	 exacerbated	 in	 automated	 environments.	 The	 systems	 and	
interactions	involved	tend	to	be	more	opaque;	 inappropriate	or	harmful	outputs/actions	may	
occur	 and	 go	 unnoticed	 (for	 a	 period),	 means	 for	 intervention	 can	 be	 less	 explicit,	 and	
exercising	 control	 can	 be	 more	 difficult	 given	 issues	 of	 complexity	 and	 timing	 –	 in	 general	
humans	are	slower	than	computers!		
	
Where	 a	 system	 has	 some	 autonomy	 to	 act,	 and	 thereby	 has	 the	 potential	 to	 cause	 harm,	
responsibility	 would	 seem	 to	 reside	 with	 the	 persons	 that	 control	 (or	 manage)	 its	 inputs,	
functions,	 actions	 and	deployment;	while	 transparency	 obligations	may	be	 owed	 to	 those	 on	
the	receiving	end	of	the	process.			
	
Therefore,	in	practice,	not	only	is	it	important	to	ensure	the	learned	model	is	appropriate,	but	
that	 there	 are	 the	 appropriate	 checks	 and	 constraints	 in	 the	 workflows	 and	 data	
inputs/outputs	 that	 surround	 it,	 and	 that	 all	 these	 are	 recorded	 to	 enable	 subsequent	 audit.	
That	 is,	 the	 inputs	 and	 outputs	 of	 ML	 systems	 may	 require	 bounds,	 subject	 to	 particular	
parameter	 ranges	 (e.g.	 temperature	 limits	 for	 a	 thermostat),	 constraints	 regarding	 the	
frequency	 of	 actions	 (e.g.	 cannot	 turn	 something	 on/off	 repeatedly);	 or	 be	 passed	 through	
sanitisation/verification	 procedures	 before	 being	 processed	 or	 actioned.	 There	 is	 extra	
complexity	in	that	not	all	of	these	aspects	can	be	defined	a	priori,	but	in	many	situations	it	will	
be	 necessary	 to	 account	 for	 environmental	 and	 contextual	 information	 that	 will	 change	 (in	
anticipated	 and	 unexpected	 ways)	 over	 time.	 This	 renders	 mechanisms	 for	 rigorous	 audit	
particularly	important,	to	aid	transparency	and	investigation	where	necessary.			
	
Flow-on	effects	
	
On	complexity,	some	ML	processes	will	operate	in	a	separate,	standalone	context.	For	example,	
ML	in	a	game	or	control	system	represents	a	closed	and	well-understood	environment.	Systems	
that	 feed	 back	 to	 humans,	 such	 as	 the	 skin	 lesion	 diagnosis	 example	mentioned	 earlier,	 are	

																																								 																					
83Kamarinou	and	Millard,	‘Machine	Learning	with	Personal	Data’.	
84	J.	 Singh	 et	 al.,	 ‘Twenty	 Security	 Considerations	 for	 Cloud-Supported	 Internet	 of	 Things’,	 IEEE	Internet	of	Things	
Journal	3,	no.	3	(June	2016):	269–84.	
85	Mireille	 Hildebrandt,	 Smart	 Technologies	 and	 the	 End(s)	 of	 Law:	 Novel	 Entanglements	 of	 Law	 and	 Technology	
(Cheltenham,	UK:	Edward	Elgar	Pub,	2015).	
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naturally	 constrained	 in	 that	 a	 human	 must	 take	 the	 next	 step.	 In	 both	 situations	 there	 is	
clearly	 potential	 for	 harm	 resulting	 from	 the	 ML	 process;	 however,	 the	 environment,	
workflows	 and	 points	 of	 interaction	 are	 (comparatively)	 well-defined,	 facilitating	 risk	
assessment	and	mitigation.		
	
Consider	large-scale	computing	environments,	for	example	IoT-enabled	smart	cities,	that	entail	
‘systems	 of	 systems’.86	Such	 environments	 have	 many	 ‘moving	 parts’	 –	 including	 a	 range	 of	
different	software,	 services,	agents	 (and	people!)	–	all	of	which	might	use	or	be	affected	by	a	
range	 of	 ML	 models.	 Managing	 responsibility	 in	 these	 environments	 presents	 a	 significant	
challenge.	 There	will	 be	 feedback	 loops	 between	 systems,	where	 the	 outputs/actions	 of	 one	
system	 can	 feed	 into	 others	 in	 real-time.	 The	 interactions	 can	 be	 direct,	 e.g.	 competing	 for	
resources,	or	more	indirect,	through	‘butterfly	effects’,	where	(subtle)	actions	of	a	system	can	
(potentially	dramatically)	affect	others.		It	is	therefore	important	that	management	regimes	can	
be	applied	broadly,	within	and	across	workflows	and	systems	(see	§5).		
	
4.2	Deployed	ML	models	and	updates	
	
A	 deployed	 (“in	 production”)	ML	model,	 i.e.	 integrated	 into	 a	 system/workflow,	 operates	 on	
real-world	(or	‘live’)	data,	to	make	predictions,	classifications,	decisions,	etc.	
	
There	will	 be	many	 situations	 in	which	 a	model	will	 need	 to	 be	 updated	 and	 changed.	 This	
might	be,	as	mentioned	in	§3.2,	due	to	the	nature	of	the	data	evolving	over	time	which	affects	a	
model’s	accuracy.	Or	alternatively,	updates	may	be	required	due	to	a	broader	or	overt	change	
in	 circumstance	 that	 requires	an	active	 intervention;	 for	 example,	 the	advent	of	 a	new	social	
media	platform	would	 impact	sentiment	analysis	models,	or	an	autonomous	vehicle	 failing	to	
identify	obstacles	in	particular	lighting	conditions87	raises	urgent	safety	considerations.	Again,	
such	concerns	relate	to	the	responsibility	to	ensure	a	model	remains	fit	for	purpose.	
	
Towards	 this,	 a	 model	 “build(retrain/update)-and-redeploy”	 approach	 is	 common	 practice.88	
The	 nature	 of	 any	 such	 process	 will	 vary,	 depending	 on	 the	 situation.	 Consider	 self-driving	
vehicles,	where	 learning	tasks	and	data	are	complex,	and	there	are	broader	concerns	such	as	
safety.	Here,	given	the	vast	amounts	of	traffic,	city	and	vehicle	data	that	require	processing,	one	
would	expect	that	driving	models	would	be	computed	in	a	cloud	(or	cluster),	where	the	learned	
models	 are	 rigorously	 tested	 before	 updates	 are	 sent	 to	 vehicles.	 A	 vehicle	would	 install	 the	
model,	and	apply	it	on	the	inputs	it	receives	from	its	many	sensors.	The	vehicle	would	also	send	
certain	 data	 back	 to	 the	 cloud	 for	 analysis	 and	 to	 assist	 future	 learning.	 Updates	 in	 such	 a	
circumstance	may	 be	 relatively	 infrequent	 and	 ad-hoc,	 compared	 to	 other	 application	 areas	
such	 as	 finance	 or	 news-trend	 analytics,	 where	 periodic	 retraining	 might	 occur	 more	
frequently	 –	 perhaps	 in	 the	 order	 of	 hours.89	For	 these	 later	 examples,	 the	 retraining	 and	
updating	processes	will	likely	be	automated.		
	
Note	 that	 online	 learning	 approaches	 –	 that	 learn	 based	 on	 individual	 inputs	 (§2.3)	 –	 are	
amenable	 to	 scenarios	where	 the	model	 is	 continually	 and	 automatically	 refined	 rather	 than	
redeployed.90	However,	 from	 a	 responsibility	 perspective,	 similar	 concerns	 remain.	 That	 is,	
even	where	a	model	can	‘self-adapt’,	care	must	be	taken	to	ensure	that	the	proper	monitoring	

																																								 																					
86	J.	A.	Stankovic,	 ‘Research	Directions	for	the	Internet	of	Things’,	IEEE	Internet	of	Things	Journal	1,	no.	1	(February	
2014):	3–9,	doi:10.1109/JIOT.2014.2312291.	
87	http://electrek.co/2016/07/01/understanding-fatal-tesla-accident-autopilot-nhtsa-probe/	
88	See,	for	example,	Amazon’s	and	Microsoft’s	guidance	on	model	retraining:	http://docs.aws.amazon.com/machine-
learning/latest/dg/retraining-models-on-new-data.html,	 and	 https://azure.microsoft.com/en-
gb/documentation/articles/machine-learning-retrain-models-programmatically/		
89	Ibid.	
90	For	 an	 overview	 and	 links	 to	 various	 online	 approaches	 to	 dealing	with	 adaptive	 data,	 see	 Žliobaitė,	 ‘Learning	
under	Concept	Drift’	and	Kadwe	and	Suryawanshi,	‘A	Review	on	Concept	Drift’.	
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and	 constraints	 are	 in	 place.	 Further,	 there	 will	 still	 exist	 situations	 requiring	 more	 direct	
interventions,	e.g.	to	prevent	and	respond	to	incidents	that	(could)	cause	harm.	
	

4.3	Provisioning	ML	
	
Also	 relevant	 to	 issues	 of	 responsibility	 are	 the	 practical	 aspects	 of	 provisioning	 ML-driven	
systems.		
	
Skills	&	expertise	
	
Before	considering	more	specific	aspects	of	ML	provisioning,	it	 is	worth	noting	that	skills	and	
expertise	 play	 an	 important	 role.	 Machine	 learning	 brings	 together	 a	 range	 of	 specialities,	
including	 computer	 science,	 mathematics,	 statistics,	 probability,	 optimisation,	 information	
theory,	and	data	management.	Expertise	and	skill	are	involved	in:	selecting	the	appropriate	ML	
technique(s),	 data	 and	 features,	 as	 appropriate	 for	 the	 problem	domain,	which	must	 also	 be	
tuned	and	managed;	defining	the	appropriate	 learning,	evaluation	and	optimisation	 functions	
and	 procedures;	 avoiding	 overfit/underfit,	 where	 the	 model	 fails	 to	 align	 with	 the	 general	
underlying	 trend(s);	 and	 importantly,	 as	 we	 see	 ML-driven	 systems	 increasingly	 deployed,	
ensuring	that	system	behaviour	remains	appropriate,	in	line	with	the	requisite	responsibilities	
and	obligations,91	which	may	well	evolve	over	time.	
	
It	 follows	 that	 engineering	 ML	 systems	 requires	 significant	 expertise.	 Beyond	 building	
functionality,	an	inappropriate	model	and/or	a	model’s	unintended	or	improper	use	may	have	
significant	consequences.	From	a	responsibility	perspective,	it	is	therefore	important	that	those	
involved	 in	 the	 technical	development	of	a	ML	system	recognise	(to	 the	extent	possible),	and	
avoid,	potential	issues.		This	also	entails	considering	the	broader	context	in	which	ML	systems	
will,	or	have	the	potential,	to	be	used,	and	may	require	input	from	domain	experts.		
	
There	is	a	challenge	in	that	despite	the	increasing	demand	for	ML-driven	applications,	there	are	
reported	shortages	in	those	skilled	in	the	relevant	disciplines.92	Experience	is	crucial;	indeed,	it	
is	said	that	“developing	successful	machine	learning	applications	requires	a	substantial	amount	
of	black	art”.93	ML	tools	and	services	(e.g.	MLaaS)	are	becoming	more	widely	available,	which	
work	 to	 improve	access	 to	 (‘democratising’)94	ML	 functionality,	by	reducing	 the	 level	of	 skills	
and	 expertise	 required	 for	 leveraging	 such	 techniques.	 However,	 given	 the	 complexity	 and	
domain	 knowledge	 associated	 with	 ML,	 coupled	 with	 the	 difficulty	 in	 determining	 software	
quality	 and	 correctness,95	questions	 will	 arise	 regarding	 what	 aspects	 can	 practically	 be	
‘outsourced’	to	others,	and	how	this	impacts	responsibility,	transparency	and	control.	 
	
Skills	 and	 training	must	 also	 be	 considered	 for	 those	 providing	 input	 into	ML	processes	 (i.e.	
domain	 rather	 than	 technical	 experts),	 as	 well	 as	 for	 those	 using	 and/or	 subject	 to	 the	 ML	
systems,	e.g.	to	ensure	they	fully	understand	the	context	and	any	limitations.	
	
	
	

																																								 																					
91	Reed,	 Kennedy,	 and	 Silva,	 ‘Responsibility,	 Autonomy	 and	 Accountability:	 Legal	 Liability	 for	Machine	 Learning’;	
Kamarinou	and	Millard,	‘Machine	Learning	with	Personal	Data’.	
92	House	of	Commons,	Science	and	Technology	Committee,	‘Digital	Skills	Crisis’,	Second	Report	of	Session	2016-17	HC	
270	(n.d.).	
93	Domingos,	‘A	Few	Useful	Things	to	Know	About	Machine	Learning’.	
94	R.	Barga,	D.	Gannon,	and	D.	Reed,	 ‘The	Client	and	 the	Cloud:	Democratizing	Research	Computing’,	 IEEE	Internet	
Computing	15,	no.	1	(January	2011):	72–75.	
95	See	System	Supply	Chains,	below.	
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Risk	assessments	
	
An	appropriate	risk	assessment	should	be	carried	out	prior	to	any	deployment.	The	EU	General	
Data	Protection	Regulation,	 for	 example,	 obliges	 a	 ‘controller’	 to	 carry	 out	 a	 ‘data	 protection	
impact	assessment’	where	new	technologies	are	deployed	and	the	processing	is	likely	to	have	a	
‘high	risk’	of	interfering	with	the	rights	and	freedoms	of	data	subjects.96	Given	ML	entails	states	
that	 are	 not	 explicitly	 pre-programmed,	 and	 given	 that	 the	 degree	 for	 intervention	 and	
imposing	constraints	can	be	limited	or	difficult,	risk	assessments	are	likely	to	become	integral	
to	the	process	of	deploying	and	operating	ML	systems.		
	
There	also	appears	a	role	for	standards,97	to	assist	and	guide	ML	development	and	deployment	
processes	and	 to	ensure	appropriate	consideration	has	been	given	 to	 the	risks.	 Indeed,	given	
the	 potential	 for	 uncertain	 outcomes,	 periodic	 assessments	 may	 need	 to	 be	 carried	 out	
throughout	the	life	cycle	of	the	ML	application.		
	
Generally,	it	would	appear	prudent	to	maintain	detailed	records	of	the	decisions	and	processes	
involved	 in	 all	 aspects	 of	 building	 an	 ML	 system	 –	 from	 data	 collection	 and	 management,	
feature	engineering,	model	building	and	systems	integration.			
	
System	supply	chains	
	
We	 currently	 see	 much	 high-profile	 ML	 work	 taking	 place	 in	 the	 context	 of	 a	 single	
organization.	 Moving	 forward,	 the	 provisioning	 of	 ML-driven	 systems	 could	 entail	 long,	
potentially	 complex	 system	 supply	 chains,	 encapsulating	 offerings	 across	 a	 range	 of	
organisations.	
	
Often	those	seeking	to	build	and	deploy	ML	systems	will	seek	additional	data	to	that	they	hold	
‘in-house’.	 This	 includes	 data	 sets,	 stored	 data	 such	 as	 the	 sales	 transaction	 history	 for	 an	
organisation,	as	well	as	access	to	live	feeds,	e.g.	from	sensors	or	stock-quote	data.	Relevant	data	
may	come	from	a	wide	range	of	sources,	especially	in	an	IoT	context,98	and	has	the	potential	to	
be	 useful	 for	 a	 variety	 of	 purposes	 (known	 as	 data	 repurposing99).	 Data	 aggregators	 and/or	
brokers	are	emerging.	These	need	not	be	centralised	and/or	privacy	invading.100		
	
Cloud	 will	 play	 an	 important	 role	 in	 facilitating	 the	 development	 and	 deployment	 of	 ML	
systems.	Firstly,	cloud	facilitates	data	management	and	access	in	light	of	the	potential	volume,	
range	 of	 sources,	 and	 geographic	 spread	 of	 the	 data	 involved.	 Some	ML	 learning	 processes,	
such	 as	 deep	 learning,	 require	 significant	 compute	 resources	 to	 undertake	 complex	 learning	
tasks.	These	capabilities	are	highly	amenable	to	a	cloud-based	offering,	improving	accessibility.		
	
There	 are	 offerings	 that	 aim	 to	 simplify	 aspects	 of	 ML	 engineering.	 Some	 MLaaS	 services	
provide	 platforms	 for	 building	 and	 refining	 custom	models,	 for	 example	 through	 facilitating	
experimentation.101	And	 again,	 ML	 software	 toolkits	 are	 available	 that	 provide	 access	 to	 ML	
techniques	‘out	of	the	box’.	Clearly	these	will	still	require	some	degree	of	expertise	and	skill	to	
leverage.	We	are	also	seeing	the	emergence	of	MLaaS	offerings,	particularly	by	the	larger	firms	

																																								 																					
96	See	General	Data	Protection	Regulation	2016/679	(OJ	L	119/1,	4.5.2016),	at	Article	35.	See	also	Kamarinou	and	
Millard,	‘Machine	Learning	with	Personal	Data’.,	at	2.4.	
97	Diakopoulos,	‘Accountability	in	Algorithmic	Decision	Making’.	
98	Stankovic,	‘Research	Directions	for	the	Internet	of	Things’.	
99	Nuffield	Council	on	Bioethics,	 ‘The	Collection,	Linking	and	Use	of	Data	 in	Biomedical	Research	and	Health	Care:	
Ethical	Issues’,	3	Feb	2015,	http://nuffieldbioethics.org/wp-content/uploads/Biological_and_health_data_web.pdf.	
100	For	example,	see	http://www.databoxproject.uk/	and	http://hubofallthings.com/	
101https://techcrunch.com/2016/02/16/google-makes-it-easier-to-take-machine-learning-models-into-
production/	
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that	provide	pre-trained	ML	models	–	 further	broadening	access	by	offering	a	 ‘plug-and-play’	
capability,	 e.g.	 for	 voice	 recognition,	 document	 translation	 and	 natural	 language	 processing	
(e.g.	Parsey	McParseface102)	that	can	readily	be	incorporated	into	applications	and	services.		
	
	
This	 relates	 to	 responsibility,	 as	 it	 entails	 some	 level	 of	 reliance	 and	 trust	 in	 the	 various	
components	used;	components	may	be	leveraged	without	a	need	for	(a	detailed)	understanding	
of	 the	 internals.	 Issues	 of	 software	 quality	 and	 reliability	 (bugs)	 –	 assessing	 software	 and	
validating	 its	 functionality	 is	 difficult	 –	 become	 particularly	 relevant	 given	 the	 algorithmic-
intensive	nature	and	complexity	of	ML	software.103	Concerns	are	exacerbated	when	considering	
the	 broader	 systems-context	 in	 which	 ML	 operates,	 as	 a	 deployment	 might	 entail	 a	 wide-
ranging	composition	of	software,	systems	and	services.	
	
In	 short,	 the	 system	 supply	 chains	 supporting	ML	 systems	have	 the	potential	 to	 be	 complex.	
While	 there	 will	 (or	 should)	 be	 chains	 of	 contracts	 to	 deal	 with	 the	 composition	 of	 these	
services,	issues	of	responsibility	pervade;	particularly	given	the	transparency	and	control	issues	
that	ML	 introduces.	 	 Being	 able	 to	map	 the	 components	 of	 a	ML	 system	 or	 process	 and	 the	
manner	of	their	 interaction	will	require	a	degree	of	transparency	that	 inevitably	goes	beyond	
the	words	that	appear	in	any	chain	of	contracts.				

5.		Management	technology	
	
There	 is	ongoing	research	and	development	 into	 techniques,	 technologies	and	 tools	 that	may	
assist	 in	managing	 responsibility,	 by	 improving	 levels	 of	 control,	 transparency	 and	 visibility	
over	ML	systems.	As	we	mentioned	in	§2,	this	includes	work	on	improving	the	transparency	of	
ML	 techniques,	 particularly	 where	 the	 algorithms	 are	 naturally	 opaque;	 for	 instance,	 rule	
extraction	 approaches	 that	 aim	 to	 uncover	 the	model	 underpinning	 a	 deep	 neural	 network,	
representing	 it	 in	 a	 more	 interpretable	 form. 104 	Many	 techniques	 to	 improve	 model	
transparency	entail	a	discovery	process	that	involves	exploring	the	impact	that	inputs	have	on	
resulting	outputs.105		An	emerging	area	of	work	focuses	on	explainability,	 to	provide	evidence	
and	 features	 of	 data	 relied	 upon	 by	 the	 model	 in	 producing	 its	 output,	 in	 order	 to	 better	
indicate	to	users	the	nature	of	the	model	and	decision/prediction.106		
	
Generally,	 there	 seems	 scope	 for	 ML	 techniques	 to	 not	 only	 assist	 with	 understanding	 and	
inspecting	ML	models,	 but	 also	 to	 help	manage	 and	 control	 their	 operation	 as	 part	 of	more	
complex	systems.	ML	techniques	are	already	being	explored	for	measuring	software	quality,107	
which	could	pave	the	way	for	evaluating	components	in	a	systems	composition	context.	Moving	
forward,	 one	 can	 envisage	 ML	 systems	 that	 can	 manage	 the	 interface	 between	 other	 ML	
systems,	 for	example,	 to	mediate	between	an	 individual’s	personal	device	and	 the	systems	 in	
their	surrounding	physical	environment.		
	

																																								 																					
102	https://research.googleblog.com/2016/05/announcing-syntaxnet-worlds-most.html	
103	F.	 Thung	 et	 al.,	 ‘An	 Empirical	 Study	 of	 Bugs	 in	 Machine	 Learning	 Systems’,	 in	 2012	 IEEE	 23rd	 International	
Symposium	on	Software	Reliability	Engineering,	2012,	271–80.	
104	Zilke,	‘Extracting	Rules	from	Deep	Neural	Networks’.	
105	Datta,	Anupam,	Shayak	Sen,	 and	Yair	Zick,	 ‘Algorithmic	Transparency	via	Quantitative	 Input	 Influence:	Theory	
and	Experiments	with	Learning	Systems’.	
106	Ribeiro,	Singh,	and	Guestrin,	‘Why	Should	I	Trust	You?’	
107	Saiqa	 Aleem,	 Luiz	 Fernando	 Capretz,	 and	 Faheem	 Ahmed,	 ‘Benchmarking	Machine	 Learning	 Technologies	 for	
Software	Defect	Detection’,	arXiv:1506.07563	[Cs],	24	June	2015,	http://arxiv.org/abs/1506.07563;	S.	Lessmann	et	
al.,	‘Benchmarking	Classification	Models	for	Software	Defect	Prediction:	A	Proposed	Framework	and	Novel	Findings’,	
IEEE	Transactions	on	Software	Engineering	34,	no.	4	(July	2008):	485–96.	
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We	have	described	how	data	drives	ML	systems.	It	follows	that	work	on	data	management	is	of	
increasing	importance	to	both	understand	and	constrain	ML	systems.		
	
Data	provenance,108	the	ability	to	track	(and	therefore	visualise)	sources	of	data	and	the	flow	of	
data	 throughout	 systems	 –	 including	 across	 technical,	 geographic,	 organizational,	
administrative	 and	 political	 boundaries	 –	 is	 of	 increasing	 importance.	 Provenance	 appears	
useful	in	managing	issues	of	data	quality	and	representativeness.	Further,	as	outputs	from	ML	
(including	 actions/actuations)	 are	 also	 data,	 provenance	 techniques	 can	 also	 be	 used	 for	
tracking	 the	 flow	 of	 ML	 inputs	 and	 outputs.	 This	 could	 help	 in	 improving	 the	 visibility	 of	
systems	 as	 a	 whole,	 highlighting	 the	 impacts	 and	 consequences	 of	 the	 ML	 system,	 and	
indicating	 the	 circumstances	 leading	 to	 particular	 effects.	 Such	 information	 is	 useful	 for	
determining	and	correcting	system	errors	(i.e.	 technical	concerns),	as	well	as	 for	ascertaining	
compliance	and/or	determining	fault	where	breaches	occur	or	harm	is	caused.	
	 	
In	 addition	 to	 visibility,	 there	 is	 also	work	 on	 enabling	 proactive	 control.	 	 Access	 controls109	
surrounding	all	the	components	of	ML	systems	are	needed,	particularly	those	that	are	context	
aware.		
	
Privacy	 is	a	 relevant	concern,110	particularly	as	 the	world	becomes	 increasingly	 instrumented	
(with	sensors),	and	because	ML	is	dedicated	to	building	complex	models	and	associations	from	
data.	Methods	for	managing	privacy	in	data	analytics	contexts	are	gaining	in	prominence,	such	
as	differential	privacy	 techniques	 that	 regulate	 statistical	 queries	 to	 balance	 the	 utility	 of	 the	
results	with	the	probability	of	identifying	individual	records.111	Apple	recently	announced	their	
uptake	 of	 differential	 privacy	 techniques. 112 	There	 is	 also	 work	 on	 new	 infrastructures;	
directions	 in	 cloud	 computing	 aim	 at	 supporting	 ‘smaller	 clouds’,113	that	 pave	 the	 way	 for	
personal	 clouds	 and	 data	 stores	 that	 provide	 more	 control	 over	 the	 processing	 operations	
undertaken	and	the	data	released.114	These	could	be	integrated	to	improve	privacy	within	the	
system	supply-chain.		
	
Research	is	ongoing	into	policy-driven	systems,	exploring	mechanisms	for	managing	systems	in	
line	 with	 higher-level	 (user)	 concerns	 and	 environmental	 context.	 	 A	 current	 focus	 of	 this	
research	 community	 is	 on	 wide-scale	 complex	 systems,	 such	 as	 systems-of-systems	 and	 the	
IoT.115	One	approach	we	have	explored	that	we	feel	shows	promise	is	Information	Flow	Control,	
where	 security/management	 policy	 is	 coupled	 with	 data,	 enforced	 and	 audited	 within	 and	
across	systems	–	enabling	provenance	and	control,116	which	may	assist	with	compliance.117		
	
Determining	best	practices	concerning	the	building,	design,	testing	and	impact	of	ML	systems	
appears	 a	 sensible	 step	 forward.	 Formal	 definitions	 of	 these,	 i.e.	 standards	 and	 procedures,	
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117	J.	Singh	et	al.,	‘Data	Flow	Management	and	Compliance	in	Cloud	Computing’,	IEEE	Cloud	Computing	(Special	Issue	
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could	guide	and	encourage	the	development	of	technologies	facilitating	compliance;	assuming,	
of	course,	adoption	is	incentivised,	including	through	liability	regimes	targeted	at	those	having	
control	over	ML	systems.		

6.	Concluding	remarks	
	
ML	 (and	 AI)	 has	 gone	 through	 peaks	 and	 troughs	 of	 popularity.	 However,	 given	 we	 are	
currently	 in	 the	era	of	big	data	and	the	 IoT,	with	all	 the	supporting	 infrastructure	(networks,	
storage,	compute,	cloud),	this	time	ML	appears	here	to	stay.	
	
From	a	responsibility	perspective,	the	key	concern	is	the	impact	of	a	ML	system	and	the	control	
that	can	be	exercised	over	it.	The	goal	of	this	discussion	paper	was	to	highlight	that,	in	practice,	
there	are	a	number	of	aspects	to	a	ML	system	that	require	consideration:	the	ML	technique	and	
learning	model;	the	‘training’	and	‘live’	data;	the	workflows	and	potential	effects	of	ML	outputs;	
the	deployment	specifics	and	supply	chains;	the	integration	of	the	system	into	environments	of	
scale;	 the	 context(s)	 in	 which	 the	 system	 operates;	 and	 the	 skills	 and	 expertise	 of	 the	
individuals	involved.			
	
Managing	 responsibility	 concerns	 the	 ability	 to	 inspect,	 constrain	 and	 intervene.	 As	 such,	
mechanisms	that	assist	audit,	transparency,	and	particularly	control,	within	and	across	systems	
and	services,	become	all	the	more	important.	
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